Polynomial identity testing of read-once oblivious algebraic branching programs

نویسنده

  • Michael A. Forbes
چکیده

We study the problem of obtaining efficient, deterministic, black-box polynomial identity testing algorithms (PIT) for algebraic branching programs (ABPs) that are read-once and oblivious. This class has an efficient, deterministic, white-box polynomial identity testing algorithm (due to Raz and Shpilka [RS05]), but prior to this work there was no known such black-box algorithm. The main result of this work gives the first quasi-polynomial sized hitting set for size S circuits from this class, when the order of the variables is known. As our hitting set is of size exp(lg2 S), this is analogous (in the terminology of boolean pseudorandomness) to a seed-length of lg2 S, which is the seed length of the pseudorandom generators of Nisan [Nis92] and Impagliazzo-Nisan-Wigderson [INW94] for read-once oblivious boolean branching programs. Thus our work can be seen as an algebraic analogue of these foundational results in boolean pseudorandomness. We also show that several other circuit classes can be black-box reduced to readonce oblivious ABPs, including non-commutative ABPs and diagonal depth-4 circuits, and consequently obtain similar hitting sets for these classes as well. To establish the above hitting sets, we use a form of dimension reduction we call a rank condenser, which maps a large-dimensional space to a medium-dimensional space, while preserving the rank of low-dimensional subspaces. We give an explicit construction of a rank condenser that is randomness efficient and show how it can be used as a form of oblivious Gaussian elimination. As an application, we strengthen a result of Mulmuley [Mul12a], and show that derandomizing a particular case of the Noether Normalization Lemma is reducible to black-box PIT of read-once oblivious ABPs. Using our hitting set results, this gives a derandomization of Noether Normalization in that case. Thesis Supervisor: Scott Aaronson Title: Associate Professor Thesis Supervisor: Amir Shpilka Title: Associate Professor

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudorandomness for Multilinear Read-Once Algebraic Branching Programs, in any Order

We give deterministic black-box polynomial identity testing algorithms for multilinear read-once oblivious algebraic branching programs (ROABPs), in nO(lg 2 n) time.1 Further, our algorithm is oblivious to the order of the variables. This is the first sub-exponential time algorithm for this model. Furthermore, our result has no known analogue in the model of read-once oblivious boolean branchin...

متن کامل

Branching Program Uniformization, Rewriting Lower Bounds, and Geometric Group Theory

Geometric group theory is the study of the relationship between the algebraic, geometric, and combinatorial properties of finitely generated groups. Here, we add to the dictionary of correspondences between geometric group theory and computational complexity. We then use these correspondences to establish limitations on certain models of computation. In particular, we establish a connection bet...

متن کامل

Identity Testing for Constant-Width, and Any-Order, Read-Once Oblivious Arithmetic Branching Programs

We give improved hitting sets for two special cases of Read-once Oblivious Arithmetic Branching Programs (ROABP). First is the case of an ROABP with known order of the variables. The best previously known hitting set for this case had size (nw)O(logn) where n is the number of variables and w is the width of the ROABP. Even for a constantwidth ROABP, nothing better than a quasi-polynomial bound ...

متن کامل

Polynomial Identity Testing and Lower Bounds for Sum of Special Arithmetic Branching Programs

A read-once oblivious arithmetic branching program (ROABP) is an arithmetic branching program (ABP) where each variable occurs in at most one layer. In this chapter, we give the first polynomial time whitebox identity test for a polynomial computed by a sum of constantly many ROABPs. We also give a corresponding blackbox algorithm with quasi-polynomial time complexity nO(logn). In both the case...

متن کامل

Separation Between Read-once Oblivious Algebraic Branching Programs (ROABPs) and Multilinear Depth Three Circuits

We show an exponential separation between two well-studied models of algebraic computation, namely read-once oblivious algebraic branching programs (ROABPs) and multilinear depth three circuits. In particular we show the following: 1. There exists an explicit n-variate polynomial computable by linear sized multilinear depth three circuits (with only two product gates) such that every ROABP comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014